قضایای نقطه ثابت مشترک برای توابع انباضی ضعیف توسعه یافته تحت شرط ضعیف میر-کیلر توابع
Authors
abstract
در این مقاله به اثبات قضایای نقطه ثابت برای توابع مجموعه ای مقدار می پردازیم و بعضی از شرایط ضعیف انقباضی را توسیع می دهیم. نتایج ما نتایج چنگ-چن و چریچ را توسیع می دهد. در انتها با یک مثال توسیع بودن نتایج را نشان می دهیم.
similar resources
قضایای نقطه ثابت برای توابع مجموعه مقدار
هدف اصلی این رساله بیان و اثبات تعمیم هایی از قضیه نقطه ثابت باناخ برای توابع و توابع مجموعه مقدار است. کاربرد هایی از این قضایا در اثبات وجود و منحصر به فردی جواب معادلات دیفرانسیل، معادلات انتگرال و معادلات ماتریسی آورده شده است. همچنین نسخه ای از اصل انقباض باناخ در مجموعه های متعامد ثابت شده است.
15 صفحه اولقضایای نقطه ثابت و قضایای همگرایی ضعیف برای نگاشت های پیوندی تعمیم یافته در فضاهای هیلبرت
در این پایان نامه در فصل اوا مفاهیم مقدماتی را بیان کردیم و در فصل دوم نگاشت های غیر انبساطی و غیر پخشی و پیوندی را تعریف کرده و قضیه نقطه ثابت تعمیم یافته و برخی قضایای نقطه ثابت و قضیه ارگودیک غیر خطی را برای این نگاشت ها ثابت میکنیم و در فصل سوم یک رده از نگاشت های غیر خطی به نام نگاشت های پیوندی تعمیم یافته را تعریف می کنیم که شامل نگاشت های غیر انبساطی و غیر پخشی و پیوندی می شوند. سپس قضای...
قضایای نقطه ثابت برای انقباض های دوری ضعیف
در این پایان نامه به بررسی قضایای نقطه ثابت دوری ضعیف می پردازیم برای این منظور ابتدا برخی قضایای نقطه ثابت برای فضاهای متریک بررسی شده سپس مفهوم انقباض دوری در فضاهای متریک و نرم دار بیان می شود در پایان بعد از تعریف انقباض های دوری ضعیف کانان وچترجا، قضیه نقطه ثابت برای این نوع از انقباض ها بررسی می شود.
قضایای نقطه ثابت وقضایای همگرایی ضعیف برای نگاشت های ترکیبی تعمیم یافته در فضای هیلبرت
در این پایان نامه، ابتدا کلاس منبسطی از نگاشت های غیر خطی شامل کلاس هایی از نگاشت های نامنبسط، نگاشت های گسترش نیافته ونگاشت های ترکیبی در یک فضای هیلبرت رابیان می کنیم. سپس قضایای نقطه ثابت، قضایای ارگودیک وقضایای همگرایی ضعیف برای این نگاشت های غیر خطی در فضای هیلبرت را مورد بررسی قرار می دهیم.
15 صفحه اولقضایای نقطه ثابت روی توابع مجموعه ای
در این پایان نامه شرایط خاص برای وجود نقطه ثابت مشترک برای توابع مجموعه مقدار f و g روی فضاهای متریک مرتب کامل (x,<=,d) می پردازیم. همپنین یک اثبات ساده از قضیه نقطه ثابت ندلر و قضیه نقطه ثابت باناخ ارائه می دهیم و با در نظر گرفتن شرایطی به وجود و یکتایی نقطه ثابت در توابع مجموعه ای مقدار می پردازیم.
15 صفحه اولMy Resources
Save resource for easier access later
Journal title:
caspian journal of mathematical sciencesجلد ۲، شماره ۲، صفحات ۱۲۵-۱۳۶
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023